Archive Metal casting | archaeometallurgy
Jun 28 2013

Sand moulding

Bastian Asmus


Sand moulding, or rather the casting in naturally bonded sand can be traced back to 17th century AD originating in France. Modern casting industry’s demand of constant quality of casting sands led to a decline in the use of  sand which is bonded naturally.  A few art foundries in Germany, though, are still knowledgeable therein and use it for casting purposes products. Due to the high expenditure of human labour it is only a question of time until all art foundries will work with the lost-wax process.
The main difference to modern casting sands are the utilized binders. In naturally bonded sand this is usually a percentage of clay. In industrial sand they are Bentonite (mainly a clay mineral called Montmorillonite), Furans, Phenolic resin or similar chemical compounds. Since this page is concerned with archaeometallurgy we will dismiss all the explanations on modern casting technologies.

The stop motion animation shows the fabrication of a green sand mould with naturally bonded sand. It is a reconstruction of a Zeiss Junior microscope foot. This mould was made for aluminum casting.

Moulding with naturally bonded sand

Since sand on its own is not enough to produce a sand mould, a frame for holding the sand in place is needed. In foundry terms this is referred to as a flask. Flasks are usually rigid frames without fixed bottom or top and consist of two parts: a lower one also known as drag and an upper one which is called cope. So called flask pins at the sides of the cope and drag ensure a proper alignment of upper and lower half during moulding and later, once the pattern is withdrawn, during pouring.
The sand is moist or green when it is compressed into the flask, and has to be dried in a kiln before pouring. Does sand really stay in the mould!? Two processes are responsible for the stability of the sand once it is compressed. (a) The dilatant nature. (b) The sand has 8-15% clay as binder and up to 5% of water contents.
A simple test is to compress a handful of sand and throw this about half a meter into the air, and if you can subsequently catch it as a whole, you might just have a good moulding sand. There are other important criteria to be matched: Permeability, refractoriness and a fine grain for surface smoothness. Fine quartz sand (or rather coarse silt) fulfills all conditions perfectly, if there is a clay contents between 8-15 wt%. Moulding with naturally bonded sand is easily one of the most fascianting techniques, because of its simplicity and its apparent defiance to obey the law of gravity. Once you have seen a flask -a metallic frame that has no bottom and no lid- being turned without the sand dropping out of it you will surely believe me.

Moulds, patterns & co

Best suited for sand casting are simple patterns without too many undercuts. Because the pattern needs to be withdrawn to create the mould cavity, the flask consists of two halves. To mould a pattern you first have to decide were the parting of the mould is. The parting is that line, where the mould cuts the cavity in two halves. It is evident that neither side can have undercuts, or you cannot withdraw your pattern.
First we create a false half, which holds the pattern in place: The pattern is buried up to the parting line of the pattern in sand. The sand is compacted and smoothed to produce a nice parting surface arounf the pattern. Then you powder this surface with a parting agent, to prevent the green sand sticking to the model or the parting surface. Put on the cope, put finely sieved sand on top of pattern and parting surface and compact it carefully with your hands. Put more sand into the cope and compress it with tampers and mallets. The whole flask is now turned, and the false half (drag) removed. It can be discarded and is shaken out. Put the drag back on, and repeat the steps previously described for the cope. After the drag has been made it is removed again, however, this time carefully, as to avoid damage to the mould cavity (You might want to lift the drag by pushing wedges into the four corners of the flask and thus to lever the drag slowly and in a controlled way from the cope. After that you tap the pattern and withdraw it carefully. Now you have produced the mould cavity. Downsprue, sprues and vents have to be cut into the sand, so the metal melt can reach the cavity. After drying the mould in the kiln it is ready for pouring. Cope and drag are reunited, clamped and metal is poured in. After casting shake the sand: your first cast!
What happens with more complicated patterns, e.g. sculptures? Can you cast them in sand? Yes, you can; if I did not manage to confuse you as yet, you may read further on the Stückform process here.


Jun 27 2013

Lion aquamanile

Bastian Asmus

A lion aquamanile from Halberstadt, Germany
Portrait of a bronze lion aquamanile

The lion aquamanile you can see here I modelled after the aquamanile from Halberstadt. It is to date one of the very few aquamaniles that is still in its original context (Mende 2008). Aquamaniles, somtimes also referred to asaquamanale, aquimanile, aquamnilia is composed of the the two latin words aqua, for waterr und manus, for hand. The term aquamanile was used differently in medieval times than today: it mostly referred to the receptables of the water in the form of dishes or bowl. In contrast the vessel for pouring water was called urceus, i.e. latin for ewer (Wolter-von dem Knesebeck 2008, 217). Aquamaniles were used for the ritual cleansing of the priest before the mass. Apart from this ecclesiastic use aquamaniles were also to be found in secular households of high social status where they were used before meals.

Lion aquamanile

Detail shot of the wax model

During the last month or so I modelled this 13th century aquamanile and cast it in bronze in my casting workshop using the lost wax technique. The model was made from wax and was prepared over a core of loam, just as it was described by the benedictine monk and artificer Theophilus Presbyter in his schedula diversarum artium in the chapter on the production of the cast incense burner. See here how the  article on the casting of the aquamanile  went in the reconstructed medieval loam mould.

To this end wax plates were applied to the loam core. This is also described by Theophilus. An alternative way to produce a wax layer of sufficient thickness would have been the repeated dipping into liquid wax. This however was not mentioned by Theophilus and therefore not used. After the wax plates had been applied the finer details, such as the mane or the eyes of the lion were shaped.

Lion aquamanile

Detail shot of the aquamaniles face

The aquamanile weighs 3,6 kg and holds 1.35 l of water. This reconstructed aquamanile may be seen in its original function at the events of the french re-enactment project Fief et chevalerie. Contact me if you would like to purchase this or any other aquamanile.

References:

Ursula Mende 2008.
Catalogue entry 52 in: Michael Brandt (Hrsg), Bild & Bestie. Hildesheimer Bronze der Stauferzeit. 378p. 2008.

Harald Wolter-von dem Knesebeck 2008.
Zur Inszenierung und Bedeutung von Aquamanilien, in: Michael Brandt (Hrsg), Bild & Bestie. Hildesheimer Bronze der Stauferzeit. 2008.

Medi bronze aquamanile in the form of a lion

Image 1 of 7

Dies ist eine Neuschöpfung des mittelalterlichen bronzenen Löwenaquamaniles von Halberstadt. Das Original ist im Halberstädter Dommuseum. This is a lion aquamanile that was made after the medi bronze aquamanile of Halberstadt. The original is in the Halberstädter Dommuseum.

 


Jun 20 2013

Casting processes

Bastian Asmus

A very brief introduction to casting processes

The production and casting of metals is a very old trade and is known at least for the last 7000 years or so. Early evidence for mining can be found at Ai Bunar, Bulgaria and Rudna Glava, Serbia from 5000 BC onwards. Casting is a very efficient and cheap way to manufacture a desired good. This is especially true for metals. Casting processes can be discerned by the way a mould is produced. There are two possibilities: permanent moulds and lost moulds.
Lost moulds can be used only once. In order to retrieve the raw cast you have to destroy them. Permanent moulds can be used for multiple casts; they are usually made of two, three or more parts, to allow for the retrieval of the cast. Lost moulds require a pattern permanent moulds do not.

Moulding process should further be classified by the way the model or pattern is handled. There are lost models and permanent patterns. Generally patterns is the term for models used for sand-casting, whereas with the  lost-wax method it is often called a model. But as far as I can see, the English/American terminology is unfortunately rather ambiguous. This page is concerned primarily concerned with heritage casting processes, which is why modern processes are not discussed here, however I make use of modern terminology wherever feasible.

Lost moulds and lost models These are the most important lost mould processes with lost models:

  • lost wax process
  • traditional bell founding
  • traditional gun founding

In the literature lost moulds are often said to be moulds of the lost wax or cire perdu process. This is incorrect as sand moulds are also lost moulds, as are the others mentioned above. In brief, the lost wax process uses positive wax model which is being invested in a moulding material, then heated, upon which the melting wax produces the mould cavity. This requires an individual model per cast. Early bells were made like this. The English/American terminology in the humanities coined the term direct and indirect lost wax process. This addresses the means of making the wax model, i.e. if each wax model made individually from scratch, or if  the wax model in itself was replicated by more efficient means, e.g. from a mould.

Some time after the 12th century the use of the lost wax method for bell founding was replaced by a more wax-saving process, which we nowadays call traditional bell founding process. This uses a strickle board to make the bell model from fine clay, which is used to make the two-part mould. Before casting the false dell (clay bell model) is removed. A similar technology came to bear in the production of cannon and, again, slightly modified also for the production of vessels such as cauldrons.

Lost moulds and permanent patterns

The single most important method mentioned her should be casting in sand moulds, which re-uses its permanent patterns. Sand moulds on the contrary possess permanent patterns which are being reused every time a sand-mould is made. Casting in sand moulds cannot be traces back very far. The earliest mentioning of this technique in our hemisphere is probably Al Jazari aorund AD 1200 . Susan La Niece published an excellent article putting forward the scarce evidence we have for early sand casting . In central Europe the earliest evidence is tzo found in written sources of the 16th century . Suggestions put forward by Egg that Gregor Löffler had introduced sand casting to gun founding are without any substance and reveal a simplistic view of foundry processes by that author.

Moulding loam – an ingenious material

In general, a moulding material should meet the following requirements:

  • refractory
  • no shrinkage
  • gas-permeable
  • fine-grained
  • slight decay after casting (not relevant for older processes)

Since pure clay is too fat, i.e. it shows too much shrinkage in pure form, the clay must be made leaner. This is done with inorganic and organic materials, which is called temper or grog. Archaeologically proven and/or historically/ethnographically documented temper is e.g.: (quartz) Sand, crushed old forms, animal hair, horse manure and chaff. The clay acts as a binder for the inorganic, refractory ageing agents. Since these do not shrink during drying, the shrinkage of the moulding material can be adjusted via their proportion.

Organic tempers have a different function; they improve the plastic properties in the green state. Due to their fibrous shape, they reduce cracking during drying. They improve the gas permeability as they burn when firing the moulds. The moulding loam is/was produced by each foundryman himself/herself and can be produced with experience at any place where work is/was done. The raw materials are available everywhere.

Historical sources such as Theophilus Presbyter in the 12th century , Vanoccio Biringuccio  or Cellini  in the 16th century share their recipes with us. Also at Lazarus Ercker, the famous sampler and metallurgist of the 16th century, you can find some hints on how to use clay to produce refractory materials .

Dies, permanent moulds

You do not need a model, but you have to engrave a three-dimensional negative into the moulding material. You also want to be careful as to ensure that the cast can be retrieved from the mould halves. This seriously restricts the design of your object and at least for prehistoric times this moulding technique yielded far less complicated cast products than the lost wax process. They are also more labour intensive to manufacture. The advantage is the re-usability of these, and many objects can be cast without much effort once a mould is made. The materials for permanent moulds have to be refractory and hard-wearing, e.g. stone and metal.

References

Stephan Möslein. (2008). Frühbronzezeitliche Depotfunde im Alpenvorland – neue Befunde (pp. 109–130). Presented at the Vorträge des 26. NIederbayerischen Archäologentages, Deggendorf, Rahden/Westfalen.
J.J. Butler. (2002). Ingots and Insights: Reflections on Rings and Ribs. In Die Anfänge der Metallurgie in der alten Welt =: The beginnings of metallurgy in the old world (pp. 229–243). Rahden, Westf: Verlag Marie Leidorf.
Ingots and Insights: Reflections on RIngs and Ribs. (n.d.) (pp. 229–243).
Dines, I. (2010). The Theophilus Manuscript Tradition Reconsidered in the Light of New Manuscript Discoveries. In M. Mauiège & H. Westerman-Angerhausen (Eds.), Zwischen Kunsthandwerk und Kunst: Die Schedula diversarum artium (pp. 3–14). Berlin/Boston: de Gruyter.
Rossi, J.-B. de. (1890). Cloche, avec inscription dédicatoire, du VIIIe ou IXe siècle, trouvée à Canino. Revue de l’art Chrétien, (33), 1–5. Retrieved from https://archive.org/details/revuedelartchr1890lill
Drescher, H. (1961). Zwei mittelalterliche Gießereien auf dem Gelände des ehemaligen Hamburger Doms. Hammaburg, A. F. 8, 107–132.
Drescher, H. (1968). Mittelalterliche Bronzegrapen aus Lübeck. Der Wagen. Ein Lübeckisches Jahrbuch, 164–171.
Drescher, H. (1982). Zu den bronzenen Grapen des 12.-16. Jahrhunderts aus Nordwestdeuschland. In R. Pohl-Weber (Ed.), Aus dem Alltag der Mittelalterlichen Stadt. Handbuch zur Sonderausstellung (Vol. 40, pp. 157–174). Bremen.
Drescher, H. (1986). Zum Guss von Bronze, Messing und Zinn “um 1200.” Zeitschrift Für Archäologie Des Mittelalters, Beiheft 4, 389–405.
Drescher, H. (1987). Ergänzende Bemerkungen zum Giessereifund von Bonn-Schwarzrheindorf. In W. Janssen (Ed.), Eine mittelalterliche Metallgießerei in Bonn-Schwarzrheindorf (Vol. 27, pp. 201–227).
Drescher, H. (1992). Glocken und Glockenguss im 11. und 12. Jahrhundert. In G. Waurick & H. W. Böhme (Eds.), Das Reich der Salier 1024 - 1125 : Katalog zur Ausstellung des Landes Rheinland-Pfalz; [Ausstellung im Historischen Museum der Pfalz, Speyer, vom 23. März bis 21. Juni 1992] (pp. 405–414). Sigmaringen: Thorbecke.
Drescher, H. (1993). Ein Kommentar zu: Gerhard Laub, Zum Nachweis von Rammelsberger Kupfer in Kunstgegenständen aus Goslar und in anderen Metallarbeiten des Mittelalters. In Goslar Bergstadt - Kaiserstadt in Geschichte und Kunst (pp. 313–316).
Drescher, H. (1993). Zur Herstellungstechnik mittelalterlicher Bronzen aus Goslar. Der Marktbrunnen, der neu gefundene Bronze Vogel, der Greif vom Kaiserhaus und der Kaiserstuhl. In Goslar Bergstadt - Kaiserstadt in Geschichte und Kunst (pp. 251–301). Göttingen.
Drescher, H. (1993). Zur Technik berwardinischer Silber- und Bronzegüsse. In Bernward von Hildesheim und das Zeitalter der Ottonen: Katalog der Ausstellung, Hildesheim 1993. Band 1 (pp. 337–351).
Drescher, H. (1995). Gießformen früher Glocken aus Mainz. Mainzer Zeitschrift, 90/91, 183–225.
Drescher, H. (1999). Die Glocken der karolingerzeitlichen Stiftdkirche bei Vreden, Kreis Ahaus. In C. Stiegemann & M. Wemhoff (Eds.), 799, Kunst und Kultur der Karolingerzeit: Karl der Grosse und Papst Leo III. in Paderborn: Katalog der Ausstellung, Paderborn 1999 (pp. 356–364). Mainz: P. von Zabern.
Janssen, W. (1987). Eine mittelalterliche Metallgießerei in Bonn- Schwarzrheindorf. Mit Beiträgen von Hans Drescher, Christoph J. Raub und Josef Riederer. In Beiträge zur Archäologie des Rheinlandes. Rheinische Ausgrabungen (Vol. 27, pp. 135–235). Köln.
Haiduck, H. (1997). Die mittelalterliche Gussform eines Taufkessels aus der Kirche von Cappel (Kreis Cuxhaven). Zeitschrift Für Archäologie Des Mittelalters, 25/26, 87–105.
Sugaki, A., Shima, H., Kitakaze, A., & Mizota, T. (1981). Hydrothermal synthesis of nukundamite and its crystal structure. American Mineralogist, 66, 398–402.
Suhling, L. (1997). Kupfer- und Silberhütten in Buchillustrationen der frühen Neuzeit. Berichte Der Geologischen Bundesanstalt, 41, 219–231.
Telle, R., & Thönnißen, M. (2006). Prähistorische feuerfeste Werkstoffe und ihre Weiterentwicklung in keltischer und römischer Zeit. Prähistorische Feuerfeste Werkstoffe Und Ihre Weiterentwicklung in Keltischer Und Römischer Zeit, 43(2), 55–87.
Thies, H. (1993). Goslar und die frühen niedersächsichen Gebäude. In Goslar Bergstadt - Kaiserstadt in Geschichte und Kunst (pp. 95–113).
Tholl, S. (2001). Macht und Pracht. In Der Rammelsberg. Tausend Jahre Mensch – Natur – Technik. Band 2 (pp. 302–315).
Thornton, C., Rehren, T., & Pigott, V. (2009). The Production of Speiss (Iron Arsenide) during the Early Bronze Age in Iran. Journal of Archaeological Science, 36(2), 308–316.
Thornton, C. P., & Giardino, C. (2012). Serge Cleuziou and the “Tin Problem.” In Aux Marges de l’archeologie: Hommage a Serge Cleuziou (pp. 253–260). Paris: De Boccard.
Thornton, C. (2009). The Emergence of Complex Metallurgy on the Iranian Plateau: Escaping the Levantine Paradigm. Journal of World Prehistory, 22(3), 301–327. https://doi.org/10.1007/s10963-009-9019-1
Thornton, C. P. (2007). Of brass and bronze in prehistoric Southwest Asia. In Metals and Mines. Studies in Archaeometallurgy (pp. 123–135).
Timberlake, S. (2002). Medieval lead smelting boles near Penguelan, Cwmystwyth, Ceredigion. Archaeology in Wales, 42, 45–59.
Tong, K.-W. (1983). Shang musical instruments (Teil 2). Asian Music, 15, 103–184.
Toulmin, P., & Barton, P. B. (1964). A thermodynamic study of pyrite and pyrrhotite. Geochimica et Cosmochimica Acta, 28(5), 641–671. https://doi.org/10.1016/0016-7037(64)90083-3
Tsemekhman, L. S., Burylev, B. P., Golov, A. N., & Miroevskii, G. P. (2002). Modeling of Thermodynamic Properties and Fusion Diagrams of Ternary Oxosulfide Systems. Russian Journal of Applied Chemistry, 75(2), 186–190.
Ullwer, H. (2001). Messingherstellung nach dem alten Galmeiverfahren. Erzmetall, 54(6), 319–326.
Ünsal Yalçin, & H. Gönül Yalçin. (2009). Evidence for early use of tin at Tülintepe in eastern Anatolia. TÜBA-AR, 12, 123–142.
Ursula Mende. (1984). Romanische Giesslöwen in Nürnberg und Wien und ihre Zuordnung zur Magdeburger Giesshütte. Anzeiger Des Germanischen Nationalmuseums, 7–12.
Valde-Nowak, P., Klappauf, L., & Linke, F. A. (2004). Neolithische Besiedlung der Gebirgslandschaften: Fallstudie Harz. Nachrichten Aus Niedersachsens Urgeschichte, 73, 43–48.
Vályi, K. (1999). Glockengußanlage und Bronzeschmelzöfen im Hof des Klosters von Szer vom Anfang des 13. Jahrhunderts. Comunicationes Archaeologicae Hungariae, 143--169.
Verschiedene. (1400). Sammelhandschrift zur Kriegskunst. Wien. Retrieved from http://www.onb.ac.at/sammlungen/hschrift/handschriften_benuetzung.htm
Wadsworth, J., & Lesuer, D. J. (2000). The knives of J. Richtig as featured in Ripley-Yens Believe it or Not. Materials Characterization, 45, 315–326.
Wagner, G. A., Gentner, W., Gropengiesser, H., & Gale, N. H. (1980). Early Bronze Age lead-silver mining and metallurgy in the Aegean: the ancient workings on Siphnos. In P. T. Craddock (Ed.), Scientific Studies in Early Mining and Extractive Metallurgy (pp. 63–80). London: British Museum.
Wallbrecht, P. C., Blachnik, R., & Mills, K. C. (1981). The heat capacity and enthalpy of some Hume–Rothery phases formed by copper, silver and gold. Part I. Cu + Sb, Ag + Sb, Au + Sb, Au + Bi systems. Thermochimica Acta, 45(2), 189–198. https://doi.org/10.1016/0040-6031(81)80143-8
Walther, H. (1982). Die varistische Lagerstättenbildung im westlichen Mitteleuropa. Zeitschrift Der Deustchen Gesellschaft Für Geowissenschaften, 133, 667–698.
Watkinson, D., Weber, L., & Anheuser, K. (2005). Staining of archaeological glass form manganese-rich environments. Archaeometry, 47(1), 69–82.
Wattenbach, W. (1877). Ekkehart (Chronist). In Allgemeine Deutsche Biographie (Vol. 5, pp. 793–794). Leipzig: Duncker & Humblot. Retrieved from http://mdz10.bib-bvb.de/ db/bsb00008363/images/index.html?seite=795
Wedepohl, K. H., & Baumann, A. (1997). Isotope composition of medieval lead glasses reflecting early silver production in Central Europe. Mineralium Deposita, 32, 292–295.
Wedepohl, K. H., Delevaux, M. H., & Doe, B. R. (1978). The potential source of lead in the Permian Kupferschiefer bed of Europe and some selected Paleozoic mineral deposits in the Federal Republic of Germany. Contributions to Mineralogy and Petrology, 65(3), 273–281. https://doi.org/10.1007/BF00375513
Weeks, L. R., Keall, E., Pashley, V., Evans, J., & Stock, S. (2009). Lead isotope analyses of Bronze Age copper-base artefacts from al-Midamman, Yemen: towards the identification of an indigenous metal production and exchange system in the southern Red Sea region. Archaeometry, 51(4), 576–597.
Weisgerber, G. (2006). The mineral wealth of ancient Arabia and its use I: Copper mining and smelting at Feinan and Timna – comparison and evaluation of techniques, production, and strategies. Arabian Archaeology and Epigraphy, 17, 1–30.
Whitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185187. Retrieved from http://www.minsocam.org/MSA/AmMin/TOC/Abstracts/2010_Abstracts/Jan10_Abstracts/Whitney_p185_10.pdf
Wertime, T. A. (1978). The search for ancient tin: the geographic and historic boundaries. In A. D. Franklin, J. S. Olin, & T. A. Wertime (Eds.), The Search for Ancient Tin: A Seminar (pp. 1–6). Smithsonian Institution Press.
Wilfried Tittmann. (1993). Die Geschützdarstellung des Walter de Milèḿete von 1326/7. Waffen- Und Kostümkunde, 36, 145–147. Retrieved from http://www.ruhr-uni-bochum.de/technikhist/tittmann/6%20Geschuetzdarstellungen.pdf